
P R O P A G A T I O N  OF  S O U N D  IN S U S P E N S I O N S  

V.  S.  P o p o v  UDC 534.2:536.37 

The resul ts  of papers  [1-3] are  general ized to include the case  of ul t rasonic  f requencies .  

His tor ical ly ,  the theory of sound diffraction by a sphere  has been developed for  the purpose of de t e r -  
mining its absorption.  Dispersion,  in the past ,  has a t t racted considerably less  attention. Papers  [1-3], 
published recent ly ,  show the increasing in teres t  toward this subject .  

The relaxat ion theory used in [1-3] requ i res  a p rec i se  calculation of the react ions  of par t ic les  on the 
oscil lat ions of the surrounding medium. The force  acting on a par t ic le  in a sonic field has been found al-  
ready by Stokes [4]. Our in teres t  will be focussed on the investigation of t empera tu re  effects .  

F i r s t  of all, f rom calculation of the diffraction of a plane sound wave at a sphere  [5, 6] by the p roce -  
dure in [7], the thermal  d ispers ion of sound is investigated in emulsions with constituents which have s imi la r  
mechanical  p rope r t i e s .  The resul ts  obtained, taking account of thermal  conductivity inside each constituent,  
are  sys temat ized  on the basis  of the function F, well known in the l i t e ra ture  [5]. The average laws of con- 
servat ion of the mixture  are  then wri t ten  on the assumption that the effects of viscosi ty  and thermal  con- 
ductivity are  important  only in phase interact ion p ro ce s se s ,  and on this basis the acoustic p roper t i es  of 
various hydro-  and gas -mix tu res  are  studied. 

Comparison of the resu l t s  f rom both cases  allows the general  f requency re la t ion to be established for  
the coefficient of damping and the velocity of sound for  suspensions of ve ry  different nature and also es t i -  
mates the effect which is introduced by thermal  conductivity inside each of the constituents individually. 

1. We consider a plane compress ion  wave incident on a spher ica l  surface  of radius R. We shall as -  
sume that the par t ic le  size is much less than the wavelength of the p r i m a r y  wave.  We shall use the spher i -  
cal coordinates r ,  ,~, and r to r ep resen t  the field, taking the origin at the center  of the sphere  and the polar  
axis in the direct ion of propagation of the incident wave.  We express  the potential of the la t ter  ~v 0 = exp 
(ikrcos,~) in the usual way* 

ar 

r = ~ in (2n %- 1) ]n (kr) P~ (cos ~). 
n = O  

Because of the p resence  of the sphere ,  six secondary  waves originate:  three  in the p r i m a r y  medium 
- compress ion  wave ~Vr, t empera tu re  wave 6,  and viscous wave A - and three inside the par t ic le .  The 
veloci ty  result ing f rom the field sca t te red  by the droplet  can always be represen ted  by the express ion  

u = grad (% %- @) %- mt A. 

In view of the axial symmet ry ,  of the project ions Ar,  A~, and Ar the f i r s t  two are  equal to zero  and it 
only remains  to consider  Ar = A. 

The potentials Or, ~, and A will be found in the fo rm 

% = ~ i n (2n + 1) A.h~ (kr) Pn (cos 0), 
t ' t .~O 

*Here, and in future ,  we shall omit the t ime-dependent  factor  exp(- iwt) .  
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Fig.  1. Rela t ive  absorp t ion  of sound: 1) emuls ion of benzene in water ;  
2) emuls ion  of wa te r  in benzene .  

F i g .2 .  Compar i son  of va lues  of 6*~./e  o (emulsion of wa te r  in benzene),  
ca lcula ted  using the equations:  1) (5); 2) (9); 3) (7); and 4) (8). 

q~ = ~ i n (2n + 1) Bnh ~ (Kr) Pn (cos ~), 
r /~O 

A'=  ~ i n (2n + 1) Cnh~ (• P~ (cos ~}). 
n = O  

Simi la r ly ,  for  the in ter ior  of the sphere  

r = ~ in(2n + 1)A~i~ (k'r)Pn (cos~}), 
n ~ 0  

�9 ' = ~ i ~ (2n + 1) B'~ ]n (K'r) Pn (cos ~), 
n ~ 0  

A' = ~ i ~ (2n + 1) C; in (~'r) P~ (cos e) 
n ~ 0  

Here ,  in, hn, Pn, and PI n a r e  spher ica l  functions of Besse l  and Hankel,  and Legendre  functions and adjoint 
Legendre  functions.  

The boundary conditions at the su r face  of the droplet  have the f o r m  
�9 , 

U r = u r ,  U ~ U ~ ,  T =  T', 

Or Or 

Substituting he re  the genera l  express ions  for  ~Pr, 4,, . . . , A ' ,  we find the unknown coefficients  An, . . . , 
C~. As only the potent ia ls  of the sonic field a re  unknown, the var ious  physical  values  can be calculated.  

We note that in the boundary conditions for  the number  n = 0, there is no potential  of the viscous  wave.  
This c i r cums tance  p e r m i t s  the use  of light suspensions  by the p rocedure  in [7] for  investigating d i spers ion  
of the veloci ty  of sound. 

We introduce the complex wave number  

into the calculat ion and we find the c o m p r e s s i o n  s at eve ry  point of space  f r o m  the equation of s ta te  for  the 
component  

s ~- ~ p - -  aT, s' = ~ ' p - - a ' T ' .  

We de te rmine  the ave rage  c o m p r e s s i o n  s by the formula:  
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S =  1 

V V' 

We know the spatial t empera tu re  distr ibution for  each of the components f rom the calculation of the dif-  
f rac t ion  of waves at a sphere .  

A p rogress ive  calculation gives for  the wave number 

( + i6" = -k~ -~- t eo3,ToPo q~ a 
poop ~ 7 ~ ,  " F - 1 .  

PO Op 

Hence 

3 - -2 Im(F -x) .] 
q :  q~ 1+-~-  e 0 ( 7 - 1 )  P0 q_~ (1--~)s  ~l ~ 

P0 q~ 

6' 3 = T % ~ ( 7 _ 1 )  Po q.  (1_; )~  Re(F -1) 
Po ~ ~12 ' 

where 
1 

q~ = P-o e0 -~- + (1--~0) T , 

= ho (KR)  • Jo(K'R) 
KRh  I (KR) K'R]~ (K'R)  

Conversion f rom spher ical  functions in express ion  

F -~ = (1 - -  i) 
I + V  

For  low frequencies  0/ << 1), we have f rom Eq. (5) 

(5) to hyperbolic  functions gives,  for  ~? >> 1, 

%poCp/p o c~ 

9 (Poep/pg c~ )' [ (1 + 0,2%) ~l ~ --  i 32 poc. 9'~ J[ " 

Relations (1)to (7) are  identical with the corresponding computations of M. A. Isakovich [7]. 

It is difficult to evaluate the rea l  and imaginary par t s  of the general  formula  (5) and there fore  the 
natural  tendency of the author of [6] was to a presenta t ion  F, which although simple should include at the 
same time the maximum possible range of f requencies .  

If express ion  (5) is rewr i t ten  in a power sequence,  as in [6], then we obtain* 

f 1--~1 + 0.2%+ i ~1 + 2~12-~- % + 
/ 

The l imits  of applicability of Eq. (8) are  somewhat wider than for  Eq. (7). 

A significant displacement  gives the following express ion  

Re (F -1) {4~1' [1 + 0.2X q- (1 q- 0,4X) ~] + 1.6%~1 6} 

hn (F -1) = --  - -  
{~12[ 4rl3 + 6 PoP~ (1 -]- 2~1 -}- 2 ~ 1 2 ) ] } o v  

9o c 2 

The resul ts  of the calculations a re  given in Figs.  1 and 2. 

*The s imi lar  formula  in [6] is wri t ten  incor rec t ly .  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(s) 

(9) 

(io) 
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2. In the case  of heavy suspensions,  it is n e c e s s a r y  to take account of v iscosi ty .  
~ions descr ibing the acoustic p rocess  in a mixture with rigid par t ic les  has the fo rm [3]: 

0 

at 

O au 
a-5- [(1 - -  %) p - -  Po~] + (i - -  %) 9o ~-x == O, 

o8 oLt' 
- - + %  - = 0 ,  
Ot Ox 

__O [(1 - -  %) Oo u -k- %Oo u'] - -  a p  
Ot Ox 

0 
v 0-7-  (p;~ '  - '%~) = F~ ,  

- -  [(I - -  %) poc;T + ZoP~ c'p T' - -  (1 __L %) aToP ] = O~ 

0 
V (9o c'v T' - -  po%T) = Q., 

Ot 

O - -  [~p - -  aT. 
9o 

The sys tem of equa- 

(11) 

Here  Fp is the reac t ion  encountered by the par t ic les  during motion re la t ive  to the medium. The la t ter  was 
calculated by Stokes [4] and, for  harmonic oscil lat ions of the medium u ~ exp(- iwt) ,  has the fo rm 

Fp ---- \ - - - - 2 - -  ( VP~ io + 6nR~t-- 6~R 2 V ~ )  (u - -  u'). (12) 

For  a known acoustic field (Section i), it is not difficult to es t imate  the quantity Qp: 

Qp = ( - - - - ~ L  io~ + 4nRX--4~R2 ]f l= icopocp~, ) ( T - -  T'). (13) 

The second and third t e rms  of formula  (13) r ep resen t  the amount of heat t r ans f e r r ed  per  unit t ime 
f r om the medium to the par t ic le ;  they a re  the resu l t s  of evaluating the express ion  47rR~(~T/~r)Ir=R. 

The coefficient VP0cp/2 for  the der ivat ive (8 /St ) (T-T 0 in the f i r s t  t e rm  is not the same as the specific 
heat of the "combined" mass .  

Assuming that the independent var iables  in sys tem (11) are  proport ional  to exp[i(kx-wt)] ,  we obtainS: 

( 14) 
~~ Y ef 

where  

1 + e~ 6B~ 
1 - - ~ o  ; (15)  

Per =~ 9o 
1 + e~ B~ 

1 - -  eo 

c~ + e~ 6c~ B x 
1 - -  e o ; (16)  Yef = ~o 

cv -~ 6c'. B~ 
1 - -  eo  

. . . .  (17)  
B~ [ 2 ( i + 2 6 ) ~ 1  u 1 + ~ - - i ~  1 + 9  

T' 1 +~l - - iq(1  -k~l) 

" T l + n - - i n  1-}---~- I + 2 6 ~ _ p  ~q 

$Having used the case ,  we note that in [3] all computations are  ca r r i ed  out for  the relat ion f = f*exp[i(wt 
-kx ) ] ,  and in symbols ~'p = (2/9)(PMr~/Iz). 
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Fig.3,  Absorption of sound 6", dB/m, by water droplets in air: 1) total, 
formulas (20), (21), and (22); 2) viscous, formula (21); 3) thermal, for- 
mula (22); 4) total, formulas (20), (23), and (24). 

Fig .4 .  Calculation of the dispersion of the velocity of sound. 1,2) Emul- 
sion of mercury in water, formulas (19), (21), (22), and (19), (23), and (24); 
3) suspension of aluminum particles in air .  

The asymptotic estimates for the velocity of sound follow from Eqs. (14)-(18) 
1 

- - %) ~b-o ] - r  , q~ [(1 ~o 
1 

Y 

where 

cp + ~o 6c'p 
~ =  1 - - %  , 

e~ 6c~ 
cv + , l _eo  

and for ~o under the conditions of [1, 3] we have 

1 =--r-% _~ 1 - - e  o 
P~ Po Po 

(nparallel coupling w for densities). A more rigorous estimate for p~ can be obtained from Eqs. (15) and 
(17). We consider rarefied systems in which the density p~ is almost equal to the density of the containing 
medium P0. 

Assuming that dispersion is small, we find from Eqs. (14)-(18) 

1 1 [ 1 +  1 eo(6--1) Re(Ba--1)+ I eo(Y--1)6c;cv Re(B~--l)] ,  (19) 
q - =  q-~- 2 l+eo(6- -1  ) 2 (cv+eo6C'p)(cv+eo6@) 

Here, 

6*= (o [ I %(6-- 1) Im(B~,-- 1)-~ 1 eo(Y-- 1)6cpcv Im(B x -  1)]. (20) 
"qo 2 1+%(6--1)  ? (cv+%gc',)(Cv+eo6c'o) 

B ~ - - I =  

B~--t = 

4 (g - - l )~3[ l+  2 (1 +26)~] - t - i+(6- -1)~(1-1-~)  
- 3 -  -~- 

2 (1 +26)~ (~ + ~ )"+P  1+-6- 

__ 2 6 cp ~l 3 1 + ~  1 + 2 6  ~l + 3 cp 
3 c~ u 

(21) 

(22) 
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[3]: 
F o r  smal l  values  of ~, V and 6 >> 1, Eqs .  (21) and (22) conver t  to the cor responding  fo rmu la s  of paper  

B ~ - - I =  - - ( ~ ) ~ 6 ( 6 - - 1 ) ~ - k i @ ( 6 - - 1 ) ~ 2  
1 q- ( ~  6)2~ 4 ' (23, 

~ 1 4 ~  - i - -  6 - - q  2 
cp 3 cp (24) 

B x - -  1 = 

1+ - 2 6 _  
, Cp / 

The change 8" in the function ~07 = P r i / ~ )  for  a suspension of wa te r  droplets  in a i r  is shown in F ig .3 .  
It is a s sumed  for  the calcula t ion that I1 = 5 �9 10 .6 m,  q = 344 m / s e e  and e 0 = 10-6o 8" i nc rea se s  monotoniea l -  
ly with inc rease  of ~ at f i r s t  p ropor t iona l  to ~ t and then, a f te r  inflexion, to ~. This la t ter  c i r cums tance  fo l -  
lows on taking account of the iner t ia l  t e r m s  ( terms which a r e  f requency-dependent)  in fo rmulas  (12) and (13) o 
Without taking account of the l a t t e r  (see [1-3]), at high f requencies  we should have 8" = const (curve 4, Fig.  
3). 

Analysis  of the d i spers ion  of sound shows that in the ease  of a gas suspension (8 >> 1, 6(e~/Cp).. >> 1) 
the iner t ia l  t e r m s  do not c a r r y  any significant co r rec t ion  to the veloci ty  of sound. The d i spers ion  curves ,  
calcula ted using fo rmu la s  (21) and (22) and the s impl i f ied fo rmu la s  (23) and (24), a re  plotted one on the other 
(curve 3~ F ig .4 ) .  

We obse rve  a different  pa t t e rn  when consider ing a hydrosuspens ion .  For  example ,  let us take an emul -  
sion of m e r c u r y  in wa te r .  Start ing at approx imate ly  ~ = 0.3, curves  1 and 2 (Fig.4) diverge so s t rongly  that 
there  can be no question of using fo rmulas  (23) and (24). 

In conclusion we note that in the formula t ion  of s y s t e m  (11), we have neglected the rma l  conductivity 
inside each of the phases  individually. This  effect  of conductivity has a c l ea r ly  defined f o r m  and is r e p r e -  
sented in Eq. (9) and (10) by the t e r m s  containing ~. When ~ 0, it vanishes  and 

t 

2 cp 
t ~-1 - , -  - -  i ~ -  6 ~ ~12B,~. 

The r e su l t s  of the theory  d iscussed  a re  used over  a whole range of f requenc ies ,  including high u i t r a -  
sonic f requenc ies  and they a re  found to coincide with the exper imenta l  and calculated data of [2, 5, 8, 11-15]. 

f3" 

q 

Cp, c v 1"2 
k = co/q, K = (1 + i)(w/2a) / ,  

and ~4 = (1 + i)(w/2u) 1/2 
P 

t 
T 
U 

V 

# 
Y = ep / e  v 

= p 7Oo 
6* 
r 

= (c~'/a)(Ooep/pb~), 
(coRV2 )l/}, 
(coR2/2v) 1/~, 

N O T A T I O N  
is the coefficient  of the rma l  conductivity ( thermal  diffusivity); 
is the veloci ty  of sound; 
a r e  the specif ic  heats  at constant p r e s s u r e  and constant  volume; 

are the wave numbers of the acoustic, thermal, and viscous waves; 

~s the acoust ic  p r e s s u r e ;  
Is the s t r e s s  tensor ;  
is the radius  of par t ic le ;  
~s the t ime; 
ts the t empera tu re ;  
~s the velocity;  
is the volume of pa r t i c l e ;  volume occupied by a component;  
ts the coefficient  of volume expansion; 
m the i so the rmal  coefficient  of compress ib i l i ty ;  
ts the ra t io  of specif ic  heats;  
is the ra t io  of densi t ies;  
ts the coefficient  of absorpt ion;  
~s the volume concentrat ion;  
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X = X/X, 
l 

P 
t0 
Pr 

are parameters;  
is the coefficient of thermal conductivity and wavelength; 
are th e dynamic and kinematic viscosities; 
is the density; 
is the angular frequency; 
is the Prandtl number; 

S u b s c r i p t s  

0 is the unperturbed value of a quantity; value of a quantity at low frequencies; 
~o is the value of a quantity at high frequencies; 

- is the average with respect  to volume of mixtures; 
' is the value of a quantity for the suspended phase. 
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